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ABSTRACT 

In this report, a robust error control coding scheme is presented. The 

scheme is a cascaded FEC scheme supported by parity retransmissions for further 

error correction in the erroneous data words. 

throughput efficiency of the scheme are analyzed. 

proposed for NASA near earth satellite communications. 

The error performance and 

Two specific schemes are 

We show that both 

schemes provide high reliability and throughput efficiency even for high channel 

bit-error rates in the range of 10 

rate file transfer. 

-2 . The schemes are suitable for high data 

. 



PERFORMANCE ANALYSIS OF A HYBRID ARQ ERROR CONTROL SCHEME 
FOR NEAR EARTH SATELLITE COMMUNICATIONS 

1. Introduction 

In an earlier technical report [l], we proposed a hybrid ARQ error control 

The scheme was designed scheme for NASA's near earth satellite communications. 

to provide very low error probability and high throughput for high data rate 

file transfer. 

that it indeed performs very well in terms of error probability and throughput 

efficiency, even for very high bit-error-rates (BER), say in the range 10 . 

In this report, we analyze this error control scheme and show 

-2 

In order to make this report self-contained, we re-describe the proposed 

scheme here. The proposed error control scheme is a FEC (forward-error- 

correction) scheme supported by parity retransmissions for further error correc- 

tion [2,3,4],.known as a hybrid ARQ scheme. 

cascading two linear codes, the outer and inner codes. The inner code is either 

a binary block code or a binary convolutional code. 

code with symbols from the Galois field GF(2m), say a Reed-Solomon (RS) code. 

The retransmission is designed to provide additional parity-check symbols for 

further error correction. 

without decreasing the rate of the overall cascaded code. 

The report is organized in the following manner: 

The FEC scheme is achieved by 

The outer code is a block 

These additional parity-check symbols are used 

the FEC scheme is des- 

cribed in Section 2 ,  the retransmission strategy is presented in Section 3 ,  

performance analysis of the proposed scheme is given in Sections 4 and 5 ,  

specific schemes using NASA standard RS outer code are given in Section 6 ,  and 

conclusion remarks are given in Section 7. 

bility and throughput performance are included in tables and figures. 

Computation results on error proba- 

2 .  The FEC System 

The FEC scheme is a cascaded coding scheme [ 5 , 6 ) .  In this study, the inner 

code, denoted C1, is chosen as a binary (n k ) linear block code with minimum 1' 1 



distance dl. C is designed to correct t or fewer errors and simultaneously 

detect X1 (with X The outer code, 

denoted C is obtained by interleaving a maximum-distance-separable (n k ) 

linear code C over GF(2 ) with minimum distance d and rate greater than 1/2. 

Let ml be the interleaving degree (or depth). 

is an (m n m k ) code with symbols from GF(2 ) .  

We call C 

and erasures. In our proposed scheme, we assume that the code parameters 

1 1 
> t ) or fewer errors where t +A +1 I dl. 1 1 1 1  

0’ 2’ 2 
a 

2 2 
Then the outer code of the scheme 

Note that d2 - n2-k2+1 [2]. 
the base outer code which is designed for correcting symbol errors 

a 
1 2 ’ 1 2  

2 

satisfy the following conditions: 

kl = mlP 

n2 = m (n -k ) = m (d -1) 2 2 2  2 2  
with m > 1 and m2 1 2. 1 -  

There is a third code C which is used for par r 

, 

ty retransm,ssions. Cr is a 

2’ ‘r half-rate (2d - 2 ,  d -1) code obtained by shortening the base outer code C 2 2 

is also a maximum-distance-separable code with the same minimum distance d as 2 
C2. Since C is a shortened code obtained from C C and C can be encoded and r 2’ 2 r 
decoded by the same circuits. A very important property of C is its invertible 

structure which will be used in data recovery during the parity retransmissions. 
r 

P Let u be a sequence of d -1 information symbols from GF(2 ) .  Let R (u) denote 2 r 
the sequence of d -1 parity-check symbols formed based on the information 

sequence u and the half-rate code C . 
a codeword in C 

Consequently, knowing only the d2-1 parity-check symbols of a codeword in Cr, 

the corresponding d -1 information symbols can be uniquely detrmined by an 

inversion operation on the d -1 parity-check symbols [see Appendix A]. 

a shortened cyclic code, the inversion from R (u) to u can be achieved by a 
feedback shift register [2]. 2 2 2  

2 

Then the 2(d -1)-symbol word (u,Rr(u)) is r 2 

r‘ r There is a one-to-one correspondence between u and R (u). 

2 

If Cr is 2 

r 
Let vi be a codeword in C2. Since n - m (d -l), 



~~ 

< 

< 

we can divide v - -  - 
into m subsequences, vi1,vi2, . . . ,  v ; each consists of d2-1 

) be the sequence of d2-1 parity-check sym- 

A. 2 i ,m2 

symbols. For 1 5 j 5 m2, let Rr(< 
ij 

bols formed based on and Cr. Clearly (5 ,R (v ) )  is a codeword in C 

Let 
ij ij r ij r' 

Then it can be shown that R(vi) is also a codeword in C 

fact, 3, is a codeword in C2 if and only if R(5 ) is a codeword in C 

property will be used in our proposed error control scheme. 

call R ( J i )  the parity word of vi. 

[see Appendix B] . In 2 

This i 2' 
For convenience, we 

Encoding 

A message consists of a string of k x k information bits. This string is 2 
divided into k2 segments, each segment consists of k 

segment is further divided into m 1-bit b y t e s .  Each 1-bit byte is regarded as 

a symbol in GF(2 ). 

information bits. Each 1 

1 
R The encoding operation consists of two stages as shown in 

Figure 1. 

word in the cascaded code C. A codeword in two-dimensional format is shown in 

For each input message of k k bits, the output is an n n -bit code- 1 2  1 2  

Figure 2 .  The transmission is done column by column and from left to right. At 

the first stage of encoding, each k -bit segment is encoded into an n -bit code- 

word in the inner code C1, which is called a frame. 

1-bit bytes are multiplexed into ml C2-code encoders to form parity-check sym- 

1 1 

1 At the same time, the m 

bols for m codewords in C As soon as the k 

shifted into the overall encoder, k frames have been formed and transmitted. 

Also all the parity-check symbols of ml codewords in C 

in the registers of the m C -code encoders. Then these parity-check symbols 1 2  
(m (n -k ) of them) are multiplexed and shifted into the inner code encoder to 

segments of a message have been 1 2' 2 

2 

have been formed and are 2 

1 2 2  
form n -k more frames (they are parity frames). 

the k 

array in the cascaded code C. 

These n2-k2 parity frames and 2 2  
data frames formed at the first stage together form a complete codeword 2 

- 3 -  



There is another part of the encoder. This part is for retransmission (if 

needed). It consists of an encoder for the half-rate code C and a buffer. r’ 
- -  - 
1, 2,...,v Letv v be codewords in C which are formed by the upper part of the 2 ml 

overall encoder. The function of C -encoder is to form the ml parity codeword r 

in c2, 

L 
- -  - 

corresponding to the m 

These m 1 
retransmission. 

codewords, v1,v2, ..., vm , where R ( G . )  is given by (2). 1 1 
parity words are temporarily stored in a buffer for possible 

1 

There is another encoding arrangement. We can use a single C -encoder to 2 
form m codewords in C (the first m rows in Figure 2) and store them (in an 1 2 1 
array form) in a buffer. Then encode the n columns into n frames, and 

transmit them column by column. 
2 2 

This encoding arrangement requires more buffer 

store. 

Corresponding to each message of k x k information bits, the output of 1 2 
the overall encoder shown in Figure 1 is a string of n 

are said to form a data-block. 

frames. These n frames 2 2 
Consider the data-block shown in Figure 2. The 

top k - m 1 rows of the array is actually regarded as m 1 1 1 1-bit byte rows. Each 

of these 1-bit byte rows is a codeword in C and is called a data-section of the 

code array. The m data-sections form a subarray which is called a data-segment 

array. 

message segments and n -k 

divided into m 

bytes) from GF(2 1. 

parity-segment array in the buffer. 

2 

1 
Each column of a data-segment array is a data-segment. 

parity segments. 

There are k2 

Each data section is further 2 2  

subsections, each subsection consists of d2-1 symbols (or 1-bit 
I 

2 

The ml parity words, R ( G l ) ,  R ( G 2 ) ,  . . . , R(G ) form a 
ml 

Each column of this array will be called a 

2 parity-segment. 

subsections. 

Each row is called a parity-section, and consists of m 

, 



Qecodinn of a Data Block 

The decoding of a data-block is basical ly  the same as  the one described i n  

our e a r l i e r  technical report  on, "A Cascaded Coding Scheme for  Error Control" 

[5]. I t  consists of two stages.  The f i r s t  stage of decoding. Depending on the 

number of e r rors  i n  a received frame, the inner code decoder performs one of the 

three following operations: error-correction, erasure and leave-it-alone (LIA) 

operations. When a frame i n  a data block is received, i ts  syndrome is computed 

based on the inner code C1. 

of t 

frame. The n -k par i ty  b i t s  are  removed from the decoded frame, and the 

decoded m -byte data-segment is stored i n  a receiver buffer for  the second stage 

of decoding. 

with no mark. 

transmission e r rors  i n  a received frame is  t or  l e s s .  I f  the number of t rans-  

mission e r rors  i n  a received frame i s  more than X 

syndrome which corresponds t o  a correctable e r ror  pat tern with t 

e r rors .  In  t h i s  case, the decoding will be successful, but the decoded frame 

(or segment) contains undetected errors.  

detected i n  a received frame, the inner code deocder w i l l  perform one of the 

following two operations based on a cer ta in  c r i te r ion :  

I f  the syndrome corresponds t o  an e r ror  pat tern e 
o r  fewer e r ro r s ,  e r ror  correction i s  performed by adding e t o  the received 1 

1 1  

1 

A successfully decoded data-segment i s  cal led a decoded segment 

Note tha t  the decoded segment is error-free, i f  the number of 

1 

the errors  may r e s u l t  i n  a 

1 

1' 
or fewer 

If an uncorrectable e r ror  pat tern is  

1. 

2 .  

Erasure Operation - The erroneous segment is regarded being erased. 

f a c t  t h i s  segment i s  not really removed from the buffer ,  it is s t i l l  

stored there for  l a t e r  use. This segment is cal led an erased segment. 

Each 1 - b i t  byte of an erased segment i s  regarded as  an erasure for  the 

outer code decoding. 

Leave-it-alone (LIA)  ODeration - The erroneous segment is  stored i n  the 

receiver buffer with a mark. 

I n  

We c a l l  such a segment a marked segment. 

-5- 



Thus, after n2 frames of a received block have been processed, the receiver 

buffer may contain three types of segments: decoded segments without marks, 

I events occurs: 

erroneous segments with marks, and erased segments. 

The above inner code decoding consists of three operations: error- 

correction, erasure and LIA operations. An inner code decoding which performs 

only the error-correction and erasure operations is called an erasure-only 

decoding. On the other hand, an inner code decoding which performs only the 

error-correction and LIA operations is called a LIA-only decoding. 

When n frames in a received data-block have been processed, the decoder 2 
buffer contains a decoded data-segment array with m 

these 1-bit byte rows is regarded as a received codeword from C which may 

contain erroneous symbols (marked or unmarked) and erasures. The code C and 

its decoder are designed to correct the combinations of symbol erasures and 

symbol errors. Maximum-distance-separable codes (or Reed-Solomon codes) with 

symbol from GF(2 ) are most effective in correcting symbol erasures and errors. 

At the second stage of decoding, the C -decoder attempts to decode the rows 

1-bit byte rows. Each of 1 

2’ 

2 

l 

2 
of the data-segment array. 

segments respectively. The receiver stops the decoding process and requests a 

retransmission for the erroneous data-block if either of the following two 

Let i and h be the numbers of erased and marked 

1. the number i is greater than a certain pre-designed erasure threshold 

with Tes I d2-1. Tes 
I 2. the number h is greater than a certain pre-designed threshold T (i) el 

with T (i) I L(d2-l-i)/2] for a given i. e l  

If none of the above two events occurs, the C -decoder starts the 

error-correction operation on the m erroneous sections (or rows) of the data 

segment array, one at a time (they can be processed at the same time if we use 

2 

1 
I 

C -decoders). The i symbol erasures and the symbol errors with or without ml 2 

- 6 -  



marks in each section are corrected based on the code C 

error-correction threshold for a given i where 

Let  t2(i) be the 2' 

t2(i) I L(d2-1-i)/2J . ( 3 )  

If the syndrome of a section in the data-segment array corresponds to an error 

pattern of i erasures and t (i) or fewer symbol errors, error-correction is 

performed. 

2 

The values of the erased symbols, and the values and the locations 

of symbol errors are determined based on a certain algorithm. 

t (i) symbol errors are detected, then the receiver stops the decoding process 

and requests a retransmission for the erroneous data-block. If all the m sec- 

tions of a data segment array are successfully decoded, then the k2 decoded 

data-segments are either delivered t o  the user or saved in the buffer until they 

If more than 

2 

1 

are ready to be passed to the user. 

3 .  Retransmission Scheme 

When the receiver fails to decode a data-block v, it saves the erroneous 
data-segment array of 

retransmission is not v itself but a parity-block P ( v )  corresponding to v. 
in a buffer and requests a retransmission for v. The 

The 
- -  - 

be the m sections of Let v 1 9  v 29"'DVm 1 parity-block P(3) is formed based on 5. 
1 

- 
2' the data segment array of v. 

For each section 5 

Recall that each section 3 is a codeword in C i 

the encoder has already constructed a corresponding parity is 
codeword 

in C where R (v..) is the parity-check part formed based on the j-th subsection 
2 r 1J - - - 

v of 5 and the half-rate (2d -2, d -1) code Cr (i.e., (vij,Rr(v ) )  is a 
i j i 2 2 i j 
codeword in C ) .  

a m x n segment array in the transmitter buffer, which is called a parity- 

segment array. 

The m parity codewords, R(Gl) ,R(G2), . . . ,R(S ) are stored as 
ml r 1 

1 2 
When the transmitter receives a request for a retransmission for 

-7- 



~ 

, 

- -. -* 
v1 

v2 
-* 

-* 
V 

” ml- 

1 data-block v,  the inner code encoder encodes each segment of the parity-segment 

- -* 
V 1 ,m2 

2 ,m2 
-* 
v 

-* 
V 
ml’m2 - 

array into a frame (a codeword in C1). 

which is also a codeword in the cascaded code C. 

Hence a parity-block P(v) is formed, 

The parity-block P(v) is then 

transmitted to the receiver. 

When a parity-block P(v) is received, the receiver starts to decode it. 

The decoding of P(v) is the same as the decoding of a data-block v. If the 

2 decoding of P(v) is successful, inversion is then performed on the first k 

2 decoded segments of the parity-segment array. 

data-segments of v. 
This inversion gives the k 

These decoded data-segments are then delivered to the user 

or saved in the receiver buffer until they are ready for delivery. At this 

time, the erroneous data-segment array which is stored in the receiver buffer is 

discarded. 

If the C -decoder fails to decode the parity-block P ( V ) ,  then the parity- 2 
segment array of P(s) and the data-segment array of 

receiver buffer) together are used for error correction based on the half-rate 

(which is stored in the 

code C . The receiver puts 

(vij,Rr(v..)). 

and R (v. .) together to form a subsection pair, 
r ij r 1J 
- -* - 

Then the C -decoder decodes (v ,R (v . . ) )  into an estimate v 1J r ij r ij ij 
After m x m such decodings, the receiver contains the following ij ‘ 1 2  for V 

estimated data-segments array: 

I -* 
V 11 

-* 
V 12 ’ . . . ’  

-* -* 
V . . . ,  21’ v22 ’ 

-* -* . .  

-* 
2’ 

If all v1,v2, . . . ,  vm 
1 

Then the receiver checks whether each v for 1 I i I m is a codeword in C 

Note that this time C2 is used only for error detection. 

i’ 1’ -* -* -* 



are codewords in C2, then the decoding is successful and the k 

data-segments are accepted by the receiver. 

the receiver discards the erroneous data-segment array of 

buffer) and save the parity-segment arragy of P(v) for later use. 

time the receiver requests a second retransmission for v. 
mission is the data-block v itself. 
before. 

and the parity-segment array of P(v) (stored in the buffer) together are used 

for error correction based on C . If the correction process is not successful, 

then the receiver discards the parity-segment array of P(;) and saves the data- 

segment array of $. 

sion for v. 
is received, the receiver starts the decoding process again. Therefore, the 

retransmissions are alternate repetitions of the parity block P(v)  and the 

data-block as shown in Figure 3 .  The retransmissions continue until the 

message in v is finally recovered by the receiver. 

estimated 2 -* 
2 '  

If any v is not a codeword in c i 

(stored in the 

At the same 

The second retrans- 

When v is received, it is decoded as 
If the C -decoder fails to decode v,  then the data-segment array of v 2 

r 

At the same time, the receiver reqeusts a third retransmis- 

When P ( v )  The third retransmission for v is the parity block P(v). 

The major advantage of this error control scheme is that extra parity 

symbols for error correction are transmitted only when they are needed. These 

extra parity symbols are used without decreasing the rate of the cascaded code 

C. If the half-rate code Cr is powerful enough, at most one retransmission is 

needed to recover a message. When the channel is not very noisy, the error 

correcting capability of the cascaded code C should be able to recover the 

message in its first transmission. In this situation, the system throughput is 

equal to the rate of C which is R1R2. 

retransmission provides us the parity symbols of C 

capability. 

codeword in C p ,  and since C 

errors in the entire data-segment array should be corrected by C . In this 

When the channel is noisy, the first 

for extra error correction r 
Since Cr is used for correcting errors only in a subsection of a 

2 '  has the same error correcting capability as C r 

r 

- 9 -  



situation, the throughput of the system should be R R /2. 

tion is rare, then the proposed error control schemes provides maximum 

If the noisy situa- 1 2  

is the most efficient retransmission scheme and provides the highest throughput 

efficiency. 

selective-repeat ARQ scheme provides satisfactory throughput for high channel 

bit-error rate. Of course, selective-repeat ARQ scheme is more complicated to 

implement than the other two ARQ schemes. Various selective-repeat ARQ proto- 

cols have been proposed and studied [2,7-lo]. 

selective-repeat ARQ protocol, particularly designed for satellite communica- 

tions, is the Yu-Lin's selective-repeat ARQ protocol [2,7]. The basic Yu-Lin's 

protocol requires a storage buffer at the receiver which is capable of storing N 

blocks (data or parity) that can be transmitted during a round-trip delay 

For high data rate file transfer over satellite links, only 

A practical and efficient 

-10- 
- 

I 

I 

throughput R1R2 most of the time. 

Since C is a shortened code obtained from C the decoder for C can be r 2' 2 

used for decoding C Therefore, only decoders for C and C2 are needed. Since 

the inner code C1 is binary and shorter, its decoder is much simpler than the 

decoder for C2. 

r' 1 

In our earlier report [5], we showed that a cascaded coding scheme provides 

extremely high reliability. 

also provide extremely high reliability. 

in sections 4 and 5. 

We expect the proposed scheme in this report will 

Analysis of the scheme will be given 

- kl - I .  In 

which is used for 

1 A special case for the above error control scheme is that n 

this case, no inner code is used, the outer code is simply C 

both error correction and detection. The code C is used for error correction 

only. 

2 

r 

Retransmissions can be carried out in any of the three modes: the stop- 

and-wait, the go-back-N and the selective-repeat [2]. Selective-repeat scheme 



period. 

throughput performance for satellite links. 

be achieved by doubling the size of buffer store [7]. 

This basic Yu-Lin's protocol has been proved to provide very good 

Better throughput performance can 

4 .  Performance Analvsis - A SDecial Case 
In this section, we analyze a special case of the proposed error control 

scheme for which n1 - kl - P and m - 1. 
inner code C and the base outer code C is not interleaved. Hence every data 1 2 
(or parity) block consists of a single codeword from C 

inner code, there is no erasure operation. The outer code C is used to correct 

up to t 

up to t 

That is, in this special, there is no 1 

Since there is no 2' 

2 

I L(d2-1)/2j symbol errors. 

= L(d2-1)/2J symbol errors in each data-parity subsection pair when 

The half-rate code Cr is used to correct 2 

r 
retransmission occurs. To evaluate the overall error performance of the scheme, 

we need to know the error performance of the C -decoder and C -decoder. 2 r 

Error Performance of C -decoder 2 

Let E be the channel bit error rate. Let Per and Pes denote the probabil- 

ities of an incorrect decoding and a decoding failure respectively for a 

received data (or parity) block by the C2-decoder. 
,:1 

Then 

n, 

er + 'es I f [2] [$ [l-ieIn2-j, 

j=t +1 2 
and 

2 n 

P er 5 )  

where 
2 h-0 j -w+h - t W 

- P - 1 - (1-€) , 'e 

The derivations of (4) and ( 5 )  are given in [5,61. 

( 4 )  



Let denote the right-hand side of ( 5 ) .  Then Fer is an upperbound on 
er 

the probability of a decoding error of C2-decoder. 

proposed for NASA near earth satellite communications, the (256,224) RS code 

over GF(2 ) is chosen as the C code. The code is capable of correcting a 

maximum of 16 symbol errors. 

given in Table 1 and Figures 4 and 5. 

In the first specific scheme 

8 
2 

For several values of t 
- 

5 16, Per and Per+Pes are 2 

Error Performance of C -decoder r 

Let v and R(v) be a received data-block and its corresponding parity-block 

respectively. For 1 I j 5 m 

R(v) respectively. 

codeword in Cr. 

let v and R (v ) be the subsections of v and 
2’ j r j  

If v. and R (v ) are error-free, the word (v Rr(v.)) is a 
J r j  j’ J 

In a retransmission, when the C -decoder fails to decode R(v) 2 
- 

(or v ) ,  the C -decoder starts to decode the m subsection pairs, ‘Vj , Rr ‘vj 1 1 for r 2 
The C -decoder decodes (v 1 I j I m 

drome of (v.,R (v ) )  corresponds to L(d2-1)/21 or fewer errors. 

C -decoding is successful for every subsection pair and the decoded block 

R (J ) )  into an estimate v* if the syn- 
2 ‘  r j’ r j j 

If the 
J r j  

r -* -* -* -* 
v = (vl, v2, . . . ,  v 1 

2 m 
-* 

is a codeword in C 

the C -decoding is successful for the data-block v. 
failure is declared, and another retransmission is requested. To achieve high 

reliability, the base outer code C should be a rather powerful code (like the 

NASA standard (255,223)  RS code over GF(2 ) ) .  As a result, C is extremely 

powerful because it is used only to correct errors in a subsection of v. 

then v is delivered to the user. In this case we say that 2’ 
Otherwise, a decoding r 

2 
8 

r 
We can 

imagine that the probability of a decoding failure of C -decoder is very small r 

even for a high bit-error rate. Therefore, for practical applications, we may 

assume that at most one retransmission is needed. 

Assume that a data-block v and its parity-block P(v) are sent and the 

received pair is decoded by the C -decoder. Let PL:) and P(r) be the r df 

-12- 



probabilities of a 

respectively for a 

where n - 2(d2-1) 2 

decoding error and a decoding failure of the C -decoder 

subsection pair (v ,Rr(G ) )  from and P(G). Then 
r 

j 3 

and t - L(d2-1)/2]. Let Per (all 1 and Pdf be the probabil- r 
ities of a decoding error and a decoding failure of the Cr-decoder respectively 

for the data block v. Then 

(all) 
'er 

Note that, for any 

C -decoder in the first r 

combination of symbol errors introduced 

m2-1 subsections of v, there is exactly 

(10) 

by the 

one symbol error 

pattern introduced by the C -decoder in the last subsection of 5 (which consists 

of all the check symbols) such that the resulting block ;* is a codeword in C 

The probability that a given nonzero error pattern is introduced by the 

r 

2 .  

C -decoder in a specific subsection of a data-block is upper bounded by r 

d2-2 d2 

h-0 j- L(d,+1)/21 

-(max) P eP 
A - r\ [d2z] 1 E2] [$e]h[l-ie]d2-2-h c j ( 1 - e )  j(a-l) . (11) 

L 

[see Appendix C for proof]. 

(all) -(max) I P  
'er eP 

Then we have 

Overall Error Performance and ThroughDut Efficiency 

As we pointed out: earlier, since C is very powerful, at most one retrans- r 

mission is needed. Therefore, the performance with at most one retransmission 

-13- 



will give us a good indication of the overall performance of the system. Let 

P(2) and PLf' be the probabilities of a decoding error and a decoding failure 

for the system. Let $:11) denote the right-hand side of (12). Then we obtain 

er 

the following upper bounds on the error performance of the system: 

(13) (all) - - -(all) * F(2) + P P + Per 'er ' 'er es er ' Per + (Per+Pes)Per + Per - er ' 
(2) 

Define r)(2) as follows: 

Then r)(2) is a measure of the system throughput 

lowerbounded by 

(15) 

efficiency. Obviously rj-(2) is 

5. Performance Analysis - General Case with Erasure-only Decoding 

In this section, we analyze the performance of the proposed scheme in which 

the inner code decoder performs only the error-correction and erasure operations 

(no LIA operation). 

Error Performance of the Combined C and C Decoders 1 2 

In each transmission (or retransmission), a data (or parity) block is first 

decoded by the C1-decoder and then by the C2-decoder. The C -decoder may result 1 

in erased segments, each erased segment contains m erasure symbols. The 

C -decoder then attempts to correct the erasures and symbol errors in each 

section of the received data (or parity) segment array. Again let P and P 

1 

2 

er es 

denote the probabilities of a decoding error and a decoding failure for a block 

respectively by the combined C and C2 decodings. An upper bound on Per and an 1 
have been derived and can be found in one of our er+'es expression for the sum P 

earlier technical reports [5]. 



Error Performance of the C -decoder r 

Let a and P(s) be a received data-block and its corresponding parity block 

respectively. 

transmissions, the C -decoder starts to decode. At this time, the receiver 

buffer contains two segment arrays, one obtained from 7 and the other obtained 

When the C -decoder fail to decode v and P(v) in two separate 2 

r 

from P(v). 

both contain erased segments. For 1 I i I m and 1 I j I m let and 

Both segments are obtained after the inner code decoding, and hence 

1 2 ’  i j 
R (v ) be the j-th subsections of the i-th sections of the data-segment array r ij 
and its corresponding parity-segment array respectively. Let s and s! be the 

number of erasures in and R (v ) respectively. For each subsection pair 
3 J 

ij r ij -* (Til, R (7. .)), the C -decoder decodes it into an estimate v if its syndrome r 1J r ij ’ 
correspond to s +s’ symbol erasures and L(d -1-s -s!)/2] or fewer symbol errors. 

j j  2 j J ,  -* -* -* If the C -decoder successfully decodes every subsection pair, and vi - (vi1,vi2, 
..., v. ) is a codeword in C for every i with 1 I i 5 m Then the decoded 

words, v1,v2, . . .  

user, and the C -decoding is said to be successful. Otherwise, a decoding r 
failure is declared and another retransmission is requested. 

r -* 
1 ,m2 2 1’ 

-* -* -* 
with their parity symbols removed are delivered to the pvml , 

Now we analyze the error performance of the C -decoder. Assume that a 

data-block and its corresponding parity-block are sent and the received pair is 
r 

decoded by the Cr-decoder. For 1 5 u 5 ml, let Pk=)(u) and Plrf)(u) be the prob- 

abilities of a decoding error and a decoding failure respectively for a subsec- 

tion pair of the u-th section of a data-parity block pair by the C -decoder. 

Let PLi) denote the probability of a frame erasure. 

and 1 I u I m 

the u-th error symbol of the decoded segment is a. 

the probability that the u-th symbol of a decoded segment is erroneous. 

r 
For any element a in GF(2 ) 

a 

let p (u,a) be the probability that a segment is not erased and 1’ e 
For 1 I u 5 m let pe(u) be 1’ 

Then 

-15- 



A procedure for evaluating p (u,~) is given in [ 6 ] .  

in [ 61 , we can show that 

Using the same argument as e 

Note that, for any combination of symbol errors introduced by the 
~ 

n 

n -i min( [(nr-1-i)/2J ,nr-i-w) 

P(r)(u) er I P ( u )  er 

w=d -i h-0 2 i-O 

rr-;3 =w+h- [(n 2 -1-i)/2J [] P(u,i.w.h,j) (19) 
r 

where n = 2(d2-1) and r 

q-0 
be the df 

and 7 is a primitive element in GF(2 a ) .  Let Per 

probabilities of a decoding error and a decoding failure for the data block v.  
Then 

and P 

C -decoder in the  m -1 subsections of the u-th section of a data-block v ,  there r 2 
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is exactly one symbol error pattern introduced by the C -decoder in the last 

subsection such that the decoded u-th section is a codeword in C The proba- 

bility that a given nonzero error pattern is introduced by the C -decoder in a 

specific subsection of the u-th section for 1 s  u is upper bounded by the 

following expression: 

r 

2’ 

r 
m 1 

d,-1 d,. - 1 - i. 

min( Ld -i -i -1)/2] ,nr-i2-d2) 2 1 2  

h - 0  c 
n -d -i -h r 2 2  

j-d -i +h-L(d -i -i -1)/2J 2 1  2 1 2  

es 

It follows from (22) that 

(23) 

-(all) 
Let Per denote the right-hand side of (23). Then Per serves as an upper 

bound on the probability of an incorrect decoding for a data block v. 

Overall Error Performance and Throughput Efficiency 

Again we assume that the code C is very powerful so that at most one 
1: 

retransmission is needed to recover a data-block. 

probabilities of a decoding error and a decoding failure for the system respec- 

Let Pa:’ and P(2) be the df 

tively. Then we have the following bounds on P,:’ and Pdf (2). . 
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. 

(24) -(all) -(2) 
Per I Per+PesPer+Per 'er + ('es +P er )P er +Per ! Per 9 

(all) - (2) 

(2) (all) (all) (all) -(2) 
'df ' 'df 'er + 'df 4 'df 

The system throughput is measured by 

(n2 - d2+1 >kl 
1 

(2) 4 klk2 
rl n1n2 ( l+Pes 1 n n (l+Per+Pes) 1 2  

6. SDecific Schemes for NASA Near Earth Satellite Communications 

For NASA near earth satellite communications, we propose two specific 

schemes. For the first scheme, we choose n =k -8-8. No inner code is used. 

The outer code C is the extended (256,224) Reed-Solomon (RS) code over GF(2 ) 

(or a shortenedversion of this code). 

NASA standard code for TDRS Systems with an additional information symbol. This 

code has 32 parity-check symbols and is capable of correcting any combination of 

t or fewer symbol errors and e or fewer symbol erasures provided that 2t+e I 32. 

Note that the length of this code, 256, is a multiple of 32. The code C is the 

shortened (64,32) RS code obtained from shortening C2. 

recting 16 symbol errors and is extremely powerful. Therefore, even in a very 

noisy situation, a transmitted data block should be recovered at most with one 

retransmission. 

1 1  
8 

2 

The (256,224) RS code is actually the 

r 
C is capable of cor- r 

The error performance of C -decoder, C -decoder and the overall system is 2 r 
given in Table 1 and Figures 4-8 for various values of t2 (the designed error 

correcting capability of C2). For channel bit-error rate 6-10 , we see from 

Table 1 and Figure 8 that the probability of a decoding failure of the system 

with at most one retransmission is upper bounded by 4x10 

a decoding error (from Table 1 and Figure 7) of the system with t2-7 is upper 

bounded by 2x10-ll. 

-2 

-5 . The probability of 

The system throughput is shown in Figure 9 .  For bit-error 
... 

rate c-lo-', the system throughput efficiency is about 50%. 

error rate c-10 

For channel bit- 

- 3  , the probability of a system decoding failure is upper bounded 



1.64 X ~ O ' ~ ~ !  

95%. and the probability of a decoding error is upper bounded by 10 

Therefore, for Q I 

throughput is nearly 100% of the overall code rate R R 

The system throughput efficiency is simply the system code rate, 

-30, . 
the system is practically error-free and the system 

1 2' 

1 For the second specific scheme, we choose 1-8 and ml-6. The inner code C 

is a distance-4 shortened ( 5 5 , 4 8 )  Hamming code which is used for correcting 

single error and detecting double errors in a frame. 

again the (256,224) extended RS code over the Galois field GF(2 ) .  

interleaved by a depth of 6. 

over Gf(2 ) .  

The base outer code C is 2 
8 C2 is 

The code Cr is again the (64,32) shortened RS code 
8 

The error performance of the combined C and C decoders is given in 1 2 

Figures 10 and 11. The error performance of the C -decoder is shown in 

Figure 12. 

and 14. 

figures, we see that the second specific scheme also performs extremely well for 

channel bit error rate e I 10 . 

r 

The overall error performance of the system is given in Figures 13 

Throughput efficiency of the system is shown in Figure 15. From these 

- 2  

Since the second scheme uses an inner code and the base outer code is 

interleaved, it provides better performance than the first scheme. 

7 and 13, we see that the second scheme gives smaller error probability for the 

same channel bit-error rate e .  

schemes in probability of decoding failure and throughput efficiency. For 

bit-error rate e less than 2 x 

the second scheme is much smaller than that of the first scheme. As a result, 

the second scheme provides higher throughput efficiency than the first scheme 

(see Figure 17) for a certain range of bit-error rates. However, for e 4 10 , 

the first scheme gives higher throughput efficiency because, for this error 

rate, the probability of decoding failure of the first scheme is also extremely 

small and it uses less parity-check bits. 

From Figures 

Figures 16 and 17 gives a comparison of two 

the probability of a decoding failure of 

-3 

The second scheme is more complicated 
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I to implement and requires more buffer storage at both transmitter and receiver 

retransmission is the shortened (64,321 RS code obtained from the (256,224) RS 

- 2 0 -  
L 

I due to interleaving. 

7. Conclusion 

In this report, a robust error control coding scheme has been presented and 

analyzed. 

sions for further error corrections in parts (or subsections). The extra 

The scheme is a cascaded FEC scheme supported by parity retransmis- 

parity-check symbols for further error correction are transmitted only when they 

are needed. When the channel is quiet or not so noisy, the scheme behaves like 

a conventional FEC scheme with throughput efficiency equal to the overall code 

rate. 

parity symbols for correcting errors in subsections of a codeword are trans- 

mitted. The parity symbols sent in a retransmission are formed based on the 

When the channel is noisy, parity retransmission is requested and extra 

data in the original transmission and a half-rate invertible code C . These 

parity symbols contain the same amount of information as the original data. 

a result, they can be used to recover the original data either by inversion or 

r 
As 

by decoding based on C . If C is powerful enough, at most one retransmission 

is needed to recover the erroneous data. 

retransmissions, the system throughput efficiency would remain high, say 50% of 

the system code rate, even for very high bit-error rate, say in the range of 

10 . 
links with long propagation delay and nonstationary bit-error rate. 

r r 

If selective-repeat ARQ is used for 

- 2  The proposed error control scheme is particularly suitable for satellite 

The scheme 

uses the same amount of buffer store at the transmitter and receiver as a 

corresponding conventional hybrid ARQ scheme [ 2 , 3 ] .  

Two specific schemes are proposed for NASA's near earth satellite communi- 

cations. The first scheme does not use an inner code and the outer code is not 

interleaved. The outer code is the NASA standard ( 2 5 6 , 2 2 4 )  RS code over GF(2 ) .  

The half-rate code used for correcting errors in subsections during parity 

I 
8 



code. The (64,32) code is used for correcting 16 symbol errors over a subsec- 

tion pair of 64 symbols. Therefore, it is a very powerful code. As a result, 

an erroneous data would be recovered with at most one retransmission even for a 
-2 bit-error rate as high as 10 

very low error probability) for channel bit-error rate up to 

scheme is used in cooperation with Yu-Lin’s selective-repeat ARQ retransmission 

protocol, a buffer with size equal to the number of codewords transmitted in one 

round-trip delay is needed at the receiver. This buffer size is the same as the 

buffer used in a corresponding conventional selective-repeat ARQ scheme. 

. The scheme provides very high reliability (i.e. 

If this 

The second specific scheme proposed for NASA uses the same (256,224) RS 

code as the base outer code C2 except that it is interleaved to a depth of 6. 

The half-rate code Cr for parity retransmission is again the (64,32) shortened 

RS code. The scheme uses an inner code which is the distance-4 (55,48) 

shortened cyclic Hamming code. 

error and detecting double errors in a frame. 

simple, it can be implemented with a ROM using table-look-up. 

provides better performance than the first scheme, however it requires a buffer 

The inner code is used for correcting single 

The decoding of this code is very 

The second scheme 

with a size which is six times larger than that of the first scheme. 

channel bit-error rate less than 5x10 

error-free communication and have the same throughput performance. 

bit-error rate in the range ~ x I O - ~  to 

much higher throughput efficiency. 

For 

, both schemes practically provide - 3  

However for 

or higher, the second scheme gives 

If NASA’s satellite links for high rate file 

transfer operate with error rates less than 5x10-’, we recommend that the first 

scheme be used. 

acceptable, the first scheme is still a better choice. The second scheme is 

recommended when extremely high reliability and high throughput are needed for 

bit-error rate in the range from ~ x I O - ~  to 

If 50% throughput efficiency at bit-error rate ~ - 1 0 - ~  is 
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APPENDIX A 

Invertible Property of the Cr Code 

Since C is a maximum-distance-separable code, C is also a maximum- 

distance-separable code [ll]. The generator matrix in systematic form of  C is 

a (d2-1)x(2d2-2) matrix of the following form: 

2 r 

r 

Gr - [I PI 
where I is a (d -1)-dimensional identity matrix and P is a (d -l)x(d -1) square 

matrix over GF(2 ) .  

2 2 2 
I The parity-check matrix of Cr in systematic form is then 

where PT is the transpose of P. Since the minimum distance of C is d2, the r 
m 

d -1 columns of P' must be linearly independent. 

rows of P are linearly independent. 

matrix over GF(2 ) .  

This implies that the d2-1 

As a result, P is a nonsingular square 

Let P-' be the inverse of P. 

2 

a Then PP" - I. 
Let a be a (d2-1)-tuple over GF(2 a ).  Then the (2d2-2)-tuple, 

- - 
v - (a,b) - a-G r '  (A- 1) 

is a codeword in C where r 
- -  
b - a-P (A-2) 

is the parity part of v. 
- -  I Let 2' be another (d -1)-tuple over GF(2 ) such that a'za. The codeword in 2 

C corresponding to a' is r 

where 
- - 

(A-3) b' - a'-P . 
Now we want to show that 6 z b' .  Suppose that b-b'. Then, from (A-2) and 

(A-3), we have 
- - -  - -  
0 - b-b' - (a-a')-P . ( A - 4 )  
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- - - -  
Since a + a', a-a'+ 0. 

linearly independent. This is a contradiction. Hence g + b' . This says that 

there is a one-to-one correspondence between a and 6 .  

(A-2) by P-', we have 

Equation (A-4) implies that the rows of P are not 

Multiplying both sides of 

-1 - L-P-' - a.P-P - a . 

Hence the data a can be recovered uniquely from its corresponding parity part b 

by taking an inversion. 
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APPENDIX B 

Most commonly used maximum-distance-separable codes are RS codes. Let C2 
1 be a RS (or shortened or extended) code over GF(2 ) .  Let i2(X) be the generator 

polynomial of C 

polynomial in c 

Then 

The degree of g2(X) is n2-k2 - d2-l. 
(X) be the rn Let V1(x) ,V2(x), . . . 

Let <(X) be a code 

subsections of <(X). 

2' 

2 '  
- 

9 vm2 2 

- 
+ . . .  + v (X)X V(X) - V,(X) + V2(X)X "2 - k2 

m2 
where 

n2-k2-1 
Vi(X) - v + v. x + . . .  + v X i,n -k -1 2 2  io 11 

Since C is obtained by shortening C the generator polynomial r 2 '  - 
g2(X). If we encode the i-th section v (X) of v(X) based on Cr, the parity i 

( B - 2 )  

of C is also r 

. check part of the code polynomial is the remainder R [v (X)] obtained by r i  
n -k 2 2 -  dividing X V,(X> by P2(X), i.e. , 

where the degree of R [v (X)] is n2-k2-1 or less. Consider the polynomial, r i  

From (B-l), ( B - 3 )  and (B-4), we have 

( B - 5 )  
(m2-l) (n2-k2) - n2-k2 + a (X)X 

m2 
) g2(X) + 3X)X 

Since V(X) is code polynomial in C v(X) is divisible by (X). From ( B - 5 ) ,  we 2' 2 

see that R[V(X)] is divisible by ;,(XI. Since R[V(X)] is a polynomial of degree 

m (n -k )-1 - n2-1 or less, R [ < ( X ) ]  is a code polynomial in C2. 2 2 2  
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APPENDIX C 

-(max) Derivation of Pea 
~ 

Let Per(w) be the probability of occurrence of an error pattern of weight w 

in a subsection after C -decoding. 

is upper bounded by 

It is shown in [ 5 , 6 ]  that this probability r 

W+h - d 

then 

max(pe(a)) = c(1-c) 1-1 
azo 

Next we want to show that, if 

[l-(1-€) I ] e  d2+3 
I 4(d2-1) ’ 1- e 

- - 
P e p * )  2 p e p >  

for d w < n . From (C-1), we have 2 -  r 

min(t ,nr-w-l) r 
- 
Per(W+l) = 

h-0 j =w+h - t r 

By comparing each term in the right-hand sides of (C-1) and (C-4), we see that, 

if 
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for d I w I n 0 I h 5 min(t ,n -wl and 2 r’ r r  
w + h - t  5 j 1  W ,  r 

then ( C - 3 )  holds. The inequality of ( C - 5 )  can be rewritten as follows: 

Pe[max(pe(4 tY+O 11 (nr-w> (j -1) 
5 (n,-w-h) (w+l) ( C - 6 )  

(l-Pe) 

for d 

( C - 6 )  holds if 

I w I n2, 0 I h I min(t ,n -w) and w+h-t 
2 r r  r 

I j I w. The inequality of 

I d2-tr+l d2- L(d2-1)/2J+1 d2+3 
n 2 ( d2 - 1) - < 4(d2-1) * ( C - 7 )  I 

[1-(1-e) ] e  < - 
r (1-e) 

It follows from ( C - 5 )  to ( C - 7 )  that we obtain the inequality of ( C - 3 )  under the 

condition of (C-2). From ( C - 1 )  and ( C - 3 ) ,  we 

obtain the upper bound given by (11). 

Equation ( C - 2 )  holds if e I 0.2. 
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Table 1 E r r o r  performance and throughput e f f i c i e n c y  
of t h e  f i r s t  s p e c i f i c  scheme 
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C2 - Code 

Encoder 1 

~ ~. 

C2 - code 

Encoder 2 
Gate 

a 

C2 - code 
Encoder rn 1 

.- 

e 
f 

-MUX 1 C, - code Encoder 0 

* b 
0 . 

Figure 1 .  Encoder 
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n -k 1 1  
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Frame 

e 0 0 

F i g u r e  2 .  Block format 
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n -th 

Frame 
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1st 
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ml-th 
Data-sec t ion 
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Data Block Original transmission 

Parity Block 1st retransmission 

Data Block 2nd retransmission 

Parity Block 3rd retransmission 

0 

0 

0 

Figure 3. Alternate data-parity retransmission strategy 
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1 * 
1% 2% 3% 

BIT-ERROR-RATE 

Figure  4 Upper bounds on t h e  p r o b a b i l i t y  of a decoding e r r o r  of  t h e  C2-decoder 
f o r  a rece ived  data-block o r  p a r i t y  block.  
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. 
1 

10-1 

10-2 

10-3 

10-4 

10-5 

0,5% L O %  
BI T-ERROR- RATE 

1 ,5X  

Figure  5 The sum of p r o b a b i l i t i e s o f a  decoding f a i l u r e  and a decoding 
e r r o r  of t h e  C2-decoder f o r  a rece ived  data-block o r  par i ty-b lock .  
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1 

1% 2% 
3 

32 
B 1 T-ERROR- RATE 

F i g u r e  6 Upper bounds on t h e  p r o b a b i l i t y  of i n c o r r e c t  decoding f o r  a 
b lock  when each subsec t ion  pair i s  decoded by t h e  C,-decoder. 

L 



lo-* 

I I 1 * 
1% 2% 3x 

BIT-ERROR-RATE 

Figure 7 Upper bounds on the probability of a decoding error of the 
f i r s t  s p e c i f i c  scheme. 
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1 

lo-* 

1% 2% 
BIT-ERROR-RATE 

3% 

, Figure  8 Upper bounds on t h e  p r o b a b i l i t y  of a decoding f a i l u r e  of 
the f i r s t  s p e c i f i c  scneme. 
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Figure 9 Lower bounds on a measure of the throughput efficiency of 
the first specific scheme. 
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2% 3z 
B I T -  ERROR- PATE 

Figure  10 Upperboundson t h e  p r o b a b i l i t y  of a decoding e r r o r  f o r  a 
rece ived  data-block o r  pa r i ty -b lock  by C1 and C2-decoders. 
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4 per+Pes 

1 

10-1 

lo-* 

10-3 

10-4 

10-5 

- 

B IT-ERROR-RATE 
Figure  11 The sum of p r o b a b i l i t i e s  of a decoding f a i l u r e  and a decoding 

e r r o r  f o r  a rece ived  data-block o r  pa r i ty -b lock  by t h e  C 
and C2-decoder. 1 
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1 1 > 

1% 2% 3% 

BIT-ERROR-RATE 
F i g u r e  12 Upper bounds on t h e  p r o b a b i l i t y  of a decoding e r r o r  f o r  a b lock  

when each frame i s  decoded by C1-decoder a t  t h e  f i r s t  s t a g e  and 
then  each r ece ived  s u b s e c t i o n  p a i r  is  decoded by Cr-decoder a t  
t h e  second s t a g e .  
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* .’ 
4 ‘(2) 

’er 

1 1 1 s 

1% 22 3% 
BIT-ERROR-RATE 

Figure  13 Upper bound on t h e  p r o b a b i l i t y  of a decoding e r r o r  f o r  t h e  
t h e  second s p e c i f i c  scheme. 
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' (2) 
'df 

1% 2% 3% 

BIT-ERROR-RATE 
Figure  14  Upper bound on t h e  probability of a decoding f a i l u r e  f o r  t h e  

second s p e c i f i c  scheme. 
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Figure  15 Lower bound on a measure of t h e  throughput e f f i c i e n c y  f o r  t h e  
second s p e c i f i c  scheme. 
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F i g u r e  16 Upper bounds on t h e  p r o b a b i l i t y  of a decoding f a i l u r e  f o r  
two schemes. 
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Figure  17  Lower bounds on a measure of t h e  throughput e f f i c i e n c y  f o r  
t h e  two schemes. 
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